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A practical method based on distributed approximating functiofiasFs) is proposed for numerically
solving a general class of nonlinear time-dependent Fokker-Planck equations. The method relies on a numeri-
cal scheme that couples the usual path-integral concept to the DAF idea. The high accuracy and reliability of
the method are illustrated by applying it to an exactly solvable nonlinear Fokker-Planck equation, and the
method is compared with the accurd€epoint Stirling interpolation formula finite-difference method. The
approach is also used successfully to solve a nonlinear self-consistent dynamic mean-field problem for which
both the cumulant expansion and scaling theory have been found by Drozdov and Rhijfle Rev. E54,

931 (1996] to be inadequate to describe the occurrence of a long-lived transient bimodality. The standard
interpretation of the transient bimodality in terms of the “flat” region in the kinetic potential fails for the
present case. An alternative analysis based on the effective potential of thaliSgbrdike Fokker-Planck
equation is suggested. Our analysis of the transient bimodality is strongly supported by two examples that are
numerically much more challenging than other examples that have been previously reported for this problem.
[S1063-651%97)07907-3

PACS numbg(s): 02.70.Rw, 05.40tj, 02.50—r, 52.65.Ff

[. INTRODUCTION conceptual basis for understanding the physics described by
the Fokker-Planck equation and the latter provide detailed
Microscopic systems, whose dynamics are governed clasolutions.

sically by the Liouville equation and quantally by the von  The numerical solution of the Fokker-Planck equation and
Neumann equation, are time reversible. However, both equan particular the nonlinear form of this equation, is still a
tions are not soluble except under very special conditionschallenging problem. Various approaches have been ex-
Reduced descriptions are standardly obtained using thglored for obtaining numerical solutions. Suzuki's scaling
Bogoliubov-Born-Green-Kirkwood-Yvor{BBGKY) hierar-  theory[1] and normal mode analys¢2] have both proved
chy, Zwanzig's equation, or, equivalently, Mori’s general- useful for obtaining approximate solutions. However, scaling
ized Langevin equation, but these equations are still exadheory is accurate only to a few percent for intermediate
and thus, in general, also not soluble. However, appropriatémes (i.e., those between the initial and equilibrium states
truncation can lead to nonlinear equations describing macrdn the case of a linear bistable syst¢& and normal mode
scopic irreversible phenomena, such as the relaxation of theanalyses may suffer from slow convergence for general prob-
modynamic systems that are far from equilibrium and thdems. A cumulant moment method has been used success-
macroscopic self-organization of hierarchical biological sysfully by Desai and Zwanzig[4] for a nonlinear self-
tems. For a wide class of problems a useful but much simpleconsistent dynamic mean-field moddb]. The slow
description is often given by the Fokker-Planck equationconvergence of the cumulant hierarchy was later observed in
which is a mesoscopic kinetic equation incorporating a dea study of a transient bimodality carried out by Brey,
terministic drift vector and a chaotic diffusion tensor. The Casado, and Morilld6]. Path-integral methods have been
simplicity and the flexibility of the Fokker-Planck equation utilized by a number of authof¥—9]. Wehner and Wolfer
make it a popular kinetic equation both for theoreticians and10] have presented a practical formalism that numerically
for experimentalists. Theoretical aspects of the Fokkerevaluates the path integrals involving the Onsager-Machlup
Planck equation, stimulated by new experimental findingsfunctionals and reduces the errors to a few percent. Monte
are still under intensive studies. On the other hand, a variet€arlo technique$11] are useful for providing information
of new experimental phenomena, some anticipated bwbout certain properties of the system in terms of the mo-
theory, have been found to be well described by the Fokkements of the stochastic process without the need for direct
Planck equation. This synergism between experiment anteference to the probability density distribution. In the case
theory, coupled with ever-increasing computer power, hasvhere the entire distribution function is required, direct ap-
spurred intensive efforts to obtain accurate numerical soluproaches, such as those based on an eigenfunction expansion
tions of the Fokker-Planck equation efficiently. Analytical [12,13 or finite-difference methodkl4—-16, are frequently
solutions, valuable in their own right as well as for testingused. The eigenfunction expansion method is applicable to a
new numerical methods, are available for only a few simplegeneral class of linear problems. Through this approach,
cases. For more complicated problems, both analytical andarious spectral methods can be used to provide extremely
numerical methods are indispensable since the former yield accurate solutions of the Fokker-Planck equation. In particu-
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lar, by utilizing nonclassical weight functions that can bebimodality emphasizes the competition between the
adapted to the problem under study, Shizgal's mefliol  monostable oriented nonlinear effect and the random diffu-
has been showf8] to be superior to most others in terms of sion effect inside the effective potential. Our analysis is
accuracy. The finite-difference method is known to lead of-Strongly supported by two special examples that we consider.
ten to stiff systems of ordinary differential equations with One of these is characterized by an extremely long-lived
respect to the time. Chang and Coopi8] have discussed a transient bimodality and the other by a very short transient
practical finite-difference procedure that allows the distribu-Pimodality due to an extremely large relative nonlinear ef-
tion function to evolve in a quasiequilibrium manner and fect. ) . . ) .
preserves the number density of the systemthe absence of 1 hiS paper is organized as follows. First, a review of the
external sources or sinks_arsenet al. [19] generalized the DAF formalism and a practical DAF-based space-time dis-

Chang-Cooper method to allow a large time increment an&retization scheme are presented in Sec. Il. For the purpose

achieve greater numerical stability for a wide class of sys2f this presentation, we review only one particular DAF for-

tems, including the nonlinear Compton problem. Their ap—mal'sm' namely, the Hermite DAF, wh|ch we use throughout
proach, however, depends on having analytic expressions oS work; however, we note }hat there is an ongoing effort
the collision parameters, which, in general, are not availabl evoted to the furth_er thepretlc_al d_evelopment .Of DAFS'. The
for other applications. Recently, Epperld0] further gen- AF-based space-time discretization scheme is very simple

eralized the Chang-Cooper method by taking into accoun"fmd straightforward. It has some features similar in spirit to

energy conservation. His fully conservative scheme has bedRost finite-difference schemes. In this section a comparison

successfully applied to the Coulomb collision problem of al0 the formal derivation of the linear Fokker-Planck equation

spatially homogeneous plasma. Drozdov and Morjix] is also made. The reliability and accuracy of the present
have presented an elegadtipoint Stirling interpolation for- mlethokd IS de_monstrate_d using an exactly solvable Fok_ker-
mula finite-difference method, which provides a high level ofPanC equation. _Sectlon Il is (_jevoted to the numen_cal
accuracy without much increase in the number of spatial gri tuISIZ of Ithe knonlme_ar self-chnss?ent dyr_lamlc mga_n—ﬂeld
points required. Their method has been successfully appliedOkKer-Planck equation. We first give a brief description of

to the nonlinear self-consistent dynamic mean-field FokkeriN€ €quation and then compare our results with those of

Planck equatiofi5]. Drozdov and Morillo[21]. An explanation for the presence
The purpose of the present work is twofold. First, Weof a long-lived transient bimodality is presented. We end

utilize a distributed approximating functiong2,23 (DAF) ~ With a brief summary of our conclusions in Sec. IV
based time-dependent method for the solution of the nonlin-
ear Fokker-Planck equation. The reliability and accuracy of Il. METHOD

this DAF-based method are tested by considering an analyti- 15 section consists of three subsections. The DAF for-
cally solvable, nonlinear example problem. Second, we apyjism is reviewed in Sec. Il A. In Sec. Il B a DAF-based
ply the method to a numerically more challenging problem:gy,ce time discretization scheme is proposed. Finally, a nu-

the nonlinear self-con_sistent d_yn_amic mean-f_ield model, iNnerical test of the present method is given in Sec. Il C.
troduced by Kometani and Shimi£8] to describe the mu-
tual controlling and regulating interaction between a macro-
scopic biological supersystem and its weakWeiss-field
coupled microscopic subsystef#24,25. Desai and Zwan- Distributed approximating functionals have been intro-
zig [4] reconsidered this model and derived the nonlineaduced[22,23 as anapproximatemapping of a certain set of
self-consistent dynamic mean-field Fokker-Planck equatioontinuousL? functions to itself, accurate to a given toler-
using both the cumulant method and a BBGKY hierarchicalance. This set of functions is termed the “DAF class” of
approach. An interesting, non-Gaussian equilibrium distribufunctions. Again to a specified accuracy, the DAFs can be
tion and a nonlinear order-disorder phase transition werehosen so that the approximate mapping samples the class of
found by these authors using the former expansion methodunctions of interest only on a discrete set of points. One of
Additional formal analyses were later given by Daw$24].  the important properties associated with the most commonly
The present choice of this numerical example is motivatedisedcontinuousDAF mapping is that it islwayswell tem-

by the numerical study given recently by Drozdov and Mo-pered, by which term we mean that both the DAF-class func-
rillo [21]. They found an interesting, long-lived transient bi- tions and their derivatives are approximated to the same level
modality in a globally monostable case, which results inof approximation.(However, the approximation is not nec-
slow convergence of the cumulant hierarchy and the failuressarily to the same level of accuracy since derivatives do
of Suzuki’s scaling hypothesis. Another important aspect ohot necessarily lie in the DAF clagswWe remark that the
their findings is that the standard kinetic potential methodDAF mapping isexact for polynomials of degreeM + 1,

[26] fails to predict the occurrence of the long-lived bimo- where M is the highest degree polynomial being used in
dality. We are particularly interested in the causes of thisconstructing the DAF. Polynomials, of course, aat L? and
failure and for this reason we analyze the validity of thethis behavior is related to the fact that the DAFs yield an
conventional kinetic potential method. It is found that this approximate, rather than exact, mapping on the Hilbert space
method provides correct dynamical information if the gener-of L? functions.

alized diffusion coefficient is of order unity. An alternative  The ability of the DAF to provide an analytic representa-
analysis for the transient bimodality based on the effectivdion of a function and its derivatives in terms of values of the
potential of the Schidinger-like Fokker-Planck equation is function given only a discrete grid is central to its successful
proposed. The present analysis of the long-lived transientse in various computational applications. A variety of real-

A. The distributed approximating functional formalism
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izations of DAFs have been proposed, depending on the n@n a discrete grid of point€éhe quadrature pointsWith an
ture of the application of interest. We limit the following appropriate choice ol and o, the Hermite DAF thus pro-
discussion to the Hermite DAF, which is the form utilized vides a controllable approximation to DAF-class functions at
exclusively in the present work. any xvalue of interest of the form

The Dirac é function is defined to have the properties

. f(X)=foae(X) =A%, Sy(x—x|o)f(x), 9
f(x)=Jiw5(x—x’)f(x’)dx’, (D) !

whereA is the grid spacing. Moreover, the derivatives of the
o Hermite DAF provide a controllable approximation to
f(')(X)=f sV (x=x")f(x")dx'. (2 d'[8(x—x")]/dX and therefore can be used to generate ana-
o lytic approximations to derivatives for the DAF class of
However, relationg1) and (2) are of little numerical utility ~functions. lleferentlatmg DAFs lead to an analytic represen-
for practical computations because they cannot be approxtation of f)(x), atany point x in the domain of definition,
mated directly by quadrature. In the DAF approach, an ap@ccording to
proximation to thed(x—x') is constructed by using even
Hermite polynomialsH,,, [becauses(x) is symmetric in its f(l)(x):AE 5(,\|A>(X_Xi|c,)f(xi), (10)
argument as [

1 —(x—x")? which is accurate if the derivatives are also in the DAF class.
Su(x—x'[o)= P exp{ T‘z) Equation(10), together with Eq(8), implies that the differ-
entiation operation has been converted into an algebraic op-
M2 g x—x’ eration in the DAF representation. This important feature
X E ( ) ) 3 makes the DAFs a powerful computational tool for solving
\/_n' V2o various ordinary and partial differential equations. In particu-
lar, a given operator of the general form

Obviously forany fixed o, the Hermite DAFSy,(x—X'| o)

becomes identical to th&function when the maximal degree J 92

of the polynomialM goes to infinity, that is, L=A(x)+B(x) 5+C(X) 2T (1D
’\/I||an5,\,|(x—x |0)=8(x=x). @ has the Hermite DAF representation

Additionally, for fixed M, the Hermite DAF becomes iden- ( _Xj)z

tical to S(x— x' in the limit c—0, i.e., LOGxj)=AX) 6+ B(xi) - exp( 207

lim Sy(x—x'|o)=8(x—x"). (5 M/2

- Xi_Xj
o—0 X — -
b F TR e e
In analogy to the functional properties given in E¢B. and
(2), the continuous DAF mappings are A ;{ —(xi—xj)2
ex

F(3) ~Foae(X) = fiéw—x'la)f(x’)dx’, () ”

23 el )

This is the form that is most useful for ordinary differential
equations and partial differential equations. It can also be

000~ foae(x) = f:&W(x—x'lo)f(x')dx', Y 12

where () (x—x'| o) is termed a “differentiating DAF” and

is given b : : . R
g y used directly for numerical diagonalization in the case of an
1 —(x—x")? M2/ qy\n eigenvalue problem.
SW(x—x'|o)= T2 TF1 exp( 252 )E (T) The most attractive properties of the Hermite DAF for
o n=0

solving differential equations can be summarized as follows.
(i) It transforms ordinary and partial differentiations into op-
2n+|(x X ) (8) erations with appropriate integral kernels, which when evalu-
\/_ ! ated by quadrature involve their calculation to a matrix-
vector multiplication. (ii) The global nature of spectral
It is exactly thel th derivation ofsy (x—x’|c), in analogy to  methods makes their practical application difficult for prob-
5D (x—x"), occurring in Eq(2). The Hermite DAF expres- lems with complicated boundary conditions and complex ge-
sions, i.e., Eqs(6) and(7), can be discretized by quadrature, ometry. By contrast, the Hermite DAF leads to highly
thereby providing a computational scheme for generatindhanded matrix representations of derivatives, similar to
continuous fag(Xx) andf(D'}\F(x) from a knowledge off (x) finite-difference and finite-element methods. Thus the DAF

X(—1) ———
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1+J dtyLes(F(X,15), t1)+j dt1J dt,

f(x,t")

f(xt'). (15

1+E dtlf dt,-- fdt

proaches. That is, the Hermite DAF has sufficient flexibility
since the DAF does not require a Gaussian or fixed sampling
1+Z fdtlJ dt,-- J dt,
t’
main without increasing the size of the underlying polyno-
are calculated onlyonce (in a computation requiring less This form isnot numerically practical since the matrices of
depend only ox—x' and, as a result, the DAF matricen  such thatn(t,—t,_;)=t—t’ and use the Dyson time-
DAF matrices(here 2V+1 is the DAF bandwidth (iv) f(x,t)=
f(x,t")
whereN is the number of grid points. A numerical scheme

method possesses the best features of several earlier a P -
(x,t
to handle complicated boundary conditions and geometries,
like finite-difference and finite-element methods, but with an

accuracy of the same order as spectral methods. In particular, X Lep(f(X,t1), t)Lpp(f(X,t2) o) + -+

guadrature rule in its discretization, the number of grid

points is not restricted by the degree of the polynomial. This

implies that DAFs can be used for an arbitrarily large do-

mial set. (iii) Unlike spectral methods and finite-element X Lep(F(X,t),th) - Lea(F (X, 1), )

methods, the DAF-based method is extremely simple and

entails low CPU costs. The DAF matrix and its derivatives

than 555 of a second in a typical calculation on an ordinary the operator £(f(X,t,,),t,,), and consequently the values of
workstation and once obtained can be used in a wide rangéunctions f(x,t,), are needed at all times,. In order to
of problems. In additiong{)(x—x") and y(x—x’) both  obtain a practical numerical form, we choose the titge
an evenly spaced grichave a Toeplitz structure. As a result, ordering operato. Thus Eq.(15) can be written as

one needs to store ony/+ 1 numbers for)(x;—x;) (each

1) and for 6 (x;—x;) in order to generate all the various

Furthermore, the DAF matrix acting on a vector can be

evaluated by fast convolution, so the effort of evaluating

expressions like Eqg9) and (10) scales asN log,(2W+1), X Lea(F(X,t1), 1) Lep(F (X, ), tn)

based on this DAF formalism is outlined in the next subsec- ‘

tion. =T exp{j ds Lep(f(X,S),8)
tl
B. Numerical scheme

f(x,t"). (16

This is a convenient form for introducing approximations.

Consider a nonlinear Fokker-Planck equation of the gen For a sufficiently small time incremett=t—t',

eral form
af(x,t)  J[AX,F(x,1),Df(x,t) Fa
((9t )4 (&X (x.0)] f(x,t)~ 1+n§l — [LeFOE) )AL FOx,t).
2 (17
 TERIOD DICOL_ | .00,

This expression should be useful so longfés,t) does not
(13)  vary rapidly with time orAt is sufficiently small. It ignores

errors associated with the commutatorlgf; at timet and
where the time dependence of tkeseudolinear Fokker-  t+ At. We note that retaining more terms in the sum over
Planck operatot g can arise from an implicit dependence n yields more accurate results, even though commutator
on the distribution functiorf(x,t) in the generalized drift terms in lower-order contributions have been neglected. Our
coefficient A(x,f(x,t),t) and the diffusion coefficient expressior(17) is different, which results from the stochastic
B(x,f(x,t),t) and from an explicit dependence. From a nu-derivation of a Fokker-Planck equation in which only the
merical standpoint, it is helpful to symmetrizgg(f,t)f ap-  terms up to first order idt in the Kramers-Moyal expansion
propriately in order to take into account the dual roles of are kept. Numerical tests indicate that a truncation at the
since in the nonlinear cadeappears both as a part of the term that is linear in the operattar, (R=1, first-order ap-
operator and as the function on which the operator acts. Thigroximation is satisfactory for sufficiently smalkt. How-
is illustrated, for a simple example af(f )f=f(of/dx), by  ever, for a largeAt, it is necessary to retain the term that is
quadratic inLgp (i.e., R=2, or second order ihgp) Or terms
of even higher order itgp, in order to achieve the desired
accuracy and numerical stability.

For a given timg, the Hermite DAF representation of Eq.
The symmetrized form of the Fokker-Planck operator(17) is constructed according to E¢L2). The robust nature
Lep(f ) is assumed in the following discussion. In the case ofof the DAF-based method is illustrated by applying it to two
forward time propagation we know both the function nonlinear Fokker-Planck equations, as discussed in the re-
f(x,t") and the operatdcgp at an earlier time’. The func-  mainder of this paper. In the present computations, the Her-
tion f(x,t) at a later timet can be obtained by iterating Eq. mite DAF parameters are taken lsls= 54 ando=2.36A for
(13), all cases.

of

1
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C. Numerical test

In order to demonstrate the usefulness, test the accuracy,
and explore the limitations of the DAF-based method for the -20 [ .
nonlinear Fokker-Planck equation, we choose the following
nonlinear model as a benchmark:
af(x,t)  offwx+ 6(x(1)IF(x,1)} . F%f(x,1) —eol i
a Ix ax* .
(18) £
where(x(t)) is the first moment of the distribution é -6.0f .
- =
(x(t))zf xf(x,t)dx (19
andw, 6, andD are constant. Assuming an initi&lfunction eor R=4 ]
spatial distribution
f(x,0)=6(x—Xo), (20 . | |
~10.
the exact solution to Eq18) is 0.0 hd 1o 16 20
t
1 [x—(x(t))]? _ _ .
f(x,t)=———exg——————|, (21 FIG. 1. Logarithm of the relative error lgge(t)|. Solid lines,
V2ma(t) 20(t) present work; dashed lines, Rg21].

where(x(t)) ando(t) are given by the order of approximation, the better the results for the
present time increment. In the case of small time increments,

— — (0t 0)t
{x(D)=xoe (22 the effect of higher-order terms diminishes. For each given
and R, the present results are of the same or higher level of
accuracy than those obtained by Drozdov and Molffiid]
D ot using an appropriat& value. It should be noted that o&
o(t)=—(1-e" "), (23)  value doesot correspond to theiK value. The power of the
present method is demonstrated by choodityg4. In that
respectively. By defining the second momahj(t) as case the relative error decreases to about'40
—/y2 _ 2
MZ(t)_<X (t)> <X(t)> ’ (24 IlIl. A NONLINEAR SELF-CONSISTENT DYNAMIC

the accuracy of the DAF-based method can be tested using a MEAN-FIELD FOKKER-PLANCK EQUATION

relative error defined by This section consists of two subsections. For charity of
presentation, the nonlinear model is briefly reviewed in Sec.

e(t)= M2(t)R_ 1. (25) IIA. The long-lived bimodal behavior, discovered by

o(t) Drozdov and Morillo, is numerically confirmed in Sec. 11l B.

o A physical analysis of the phenomenon, based on the effec-
The subscripR indicates that the second momévi(t) has  tive potential of the Schidinger-like Fokker-Planck equa-
been evaluated using thR-order approximate expansion tion, is also given. The present interpretation is supported by
(17) for the present numerical calculations. The relative errokwo numerical examp|es, which are much more Cha”enging
is pIotted in Flg 1foD=0.1, =1, =1, andxozl. The than those reported previous|y_
time increment is taken a&t=0.01 for all cases. Only 31
evenly spaced grid points, centered about the maximum of
f(x,t), are used for orddR=1, 2, and 3, while slightly more
grid points (N=51) are used for the fourth-order approxima-  The nonlinear stochastic mean-field model was introduced
tion (R=4) to demonstrate that the present method can eady Kometani and Shimiz[b] as a physical model for muscle
ily achieve extremely high accuracy. The relative errors ofcontraction. It describes the dynamics of a large nunhbef
the accurate results obtained by Wepoint Stirling interpo-  subsystems interacting through a mean field. In the l&rge-
lation formula of Drozdov and Morilld21] are also shown limit (N—<) and using the molecular chaos assumption for
in the figure for comparison. Their results were also obtainedhe pair particle density operator, one obtains a true nonlin-
using 31 grid points and a time increment of 0.01. They use@ar Fokker-Planck equatidd] (13), namely,
an exponential power series expansion of the propagator to
approximately determiné(x,t) at smallt's. Similarly, our ~ 9f(x,t) _ o{[X®+(6—1)x—6(x(1))1f(x,)} 4D FE(x,1)
computation starts from=0.1 (In a more general case we  dt X ax?
just propagate the initiaf function) It is seen that the higher (26)

A. Model
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for the one-dimensional, “one-particle” distribution func- B. Long-lived bimodality and interpretation
tion f(x,t) with a modified bistable drift force Numerical studies of this nonlinear Fokker-Planck equa-
_ 3 tion have been conducted by a number of authors for a vari-
AT ) =X+ (06— 1)x—6(x(1)) (27) ety of states in the §,D) parameter spacg#,6,21. Desai
) ] ] and Zwanzig[4] studied five different states distributed in
and Gaussian white noise different regions of the phase diagram using both direct nu-
merical simulations and the cumulant moment method. Their
B(x,t;f )=D, (28 results indicate that the first few terms of the cumulant mo-
o ) ment method provide both a qualitative physical picture of
where(x(t)) is given by the instantaneoxsmean the problem and a very good approximation to the numeri-
cally exact results. Brey, Casado, and Mor[l& later found
_ that the cumulant moment method converges very slowly
<X(t)>_f x f(x,tdx. (29 when the diffusion coefficient is small. They used Suzuki's

scaling ided 1] to speed up their computation. A very recent
This shows explicitly that the Fokker-Planck operator de-numerical study by Drozdov and Morill®21] shows an in-

pends on the distribution function. BothandD are taken to  teresting long-lived transient bimodality before the chiral
be positive parameters. The equilibrium solution is of thestable steady state is reached in the ordered phase. Their
non-Gaussiaf4] form study indicates that both the cumulant moment method and

the scaling theory break down when the long-lived bimodal-

X ity occurs in this nonlinear case. It is well known that Suzu-

Z+(9_1) o o(x)eX| [ ki's scaling theory provides a good approximation to the
(30)  bistable dynamics in the linear case. What seems to make the

discovery by Drozdov and Morillo most remarkable is, as

whereZ is the normalization factor angk), is the equilib- ~ argued by these authors, that there is no “flat” region in the

X4 2

feAx)=Z"t exp — 1
D

rium mean position kinetic potentialU(x,t),
x4 x2
(X)o= J X F9x)dx. 31) U(xt)= 7 +(6-1) 5= &x(D)x. (34)

. . . . . This is despite the fact that the flat region in the kinetic
As discussed in great detail by Desai and Zwarial this otential or the flat plateau in the corresponding force

system allows an ordered-disordered phase transition as ohe

varies6 and/orD. The phase transition is characterized by a aU(x,t)
critical z. line implicitly given by F(x,t)=— ﬁx, (35
V2D, _ 6.~ 1 _ D_(ar(Zc) (32) has been standardly associated with transient bimodality
0 2.0 D_ap(z)’ [26]. Thus Drozdov and Morillo’s discovery presents an ob-
whereD _,(2) is a parabolic cylinder function. For givem 10.0

and D, z satisfiesz=(6—1)/\2D such that ifz<z., the
system is in the disordered phase witt)e c=0. If 2>z,

the system is in the ordered phase with three possible stead:
state values of mean position: the metastable stajgq

=0 and globally stable states given by

(X)e+=*3{(2—0)+[(2+0)>—24D]¥3Y2 (33 8.0

At the critical positionz=z_ the system will bifurcate be-
tween the two phases. It takes a long time for a given non-
equilibrium state to attain equilibrium if the system is close
to the critical line(the critical slowing down of the relaxation
to equilibrium). Due to the nonlinearity, the system prefers
only one steady state for the ordered phase, depending on tt oo
symmetry of the initial distributiorf(x,0). If the initial dis-

tribution f(x,0) is symmetric with respect =0, then the

system will be in thegx), =0 steady state. If there is sym- -20 -10 0.0 1.0 80
metry breakingwith respect tax=0) in the initial distribu- x

tion f(x,0), such agx(0))>0 [or {x(0))<0], the nonlin-

earity will lead the system to a righ{X), ) chiral stateor FIG. 2. Effective potentiaM(x,t) of Eq. (36) for 6=0.5, t

a left ((x)e,—) chiral staté. We refer the reader to Desai and =0, (x(0))=0, andD=1.0, 0.1, 0.01, 0.005, and 0.0005 from left
Zwanzig's excellent analysig}] for more details. to right (or from right to lefy.
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FIG. 3. Distribution functionf(x,t) (solid line), effective potentiaV(x,t) of Eq. (36) (dashed ling and kinetic potentiall (x,t) of Eq.
(34) (dotted ling for model(26) with #=0.5, D=0.01, and/x(0))=10"*. (a) t=1.0, (b) t=4.0, (c) t=72.0, and(d) t=105.5. Triangles,
f(x,t) of Drozdov and Morillo[21].

stacle to the usual explanation of the occurrence of the longwhich results from the transformation of the Fokker-Planck

lived transient bimodality. The purpose of the present studequation to a Schainger-like Fokker-Planck equatid27].

is to offer an alternative interpretation for the persistent tranThe corresponding Schidinger-like Fokker-Planck equation

sient phenomena. We note that the effective strength of thfor each given time has the form

nonlinearity not only is determined by the sizefbut also

is influenced by the relative magnitude of the ndige gen- 3 (X)

eralized diffusion coefficient Therefore, it is not a surprise —D — 7 F V) ¥n(X) = engn(X), (37

that the kinetic potential fails to describe the system qualita-

tively whenever the generalized diffusion coefficient is faryhere ¢, and y,(x) are the eigenvalue and eigenfunction,

from unity. We have found that the long-lived transient bi- respectively. Here we refer the reader to Hef] for more

modality can be easily understood in terms of the effectivejetails about the transformation of the Fokker-Planck equa-

potentialV(x,t), tion to the Schidinger-like Fokker-Planck equation. It is
noted that the effective potentisl(x,t) and the correspond-
ing Schralinger-like Fokker-Planck equatiai37) are intro-

3%+ 0—1) duced for interpretational purposes. Computationally, we

' pursue Eq(26) according to the method of Sec. Il. Unlike
(36)  the kinetic potentiall, the effective potential/ incorporates

X3+ (60—1)x— 0<x(t)>]2_ 1

vix.t= D 2
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the size of the diffusion coefficient to represent more closely T T ¥ T
the true size of the nonlinearity in the system. As a result, the
occurrence of the bimodality ientirely predictable. For 1.00
0=0.5, variousV(x,0) are plotted in Fig. 2 for several values

of D. It is seen thaw/(x,0) has a triple-well structure when

D is very small. The smaller th® value, the deeper the
central well. Obviously, the large humps near 0 effec- a
tively block the initial wave packetdistribution function V' o0
from quickly escaping the metastable central well if it is
placed there at=0. However, this is not the sole effect
because a smalD means a large nonlinear effect. This 0.25
causes the system to quickly reach the global stable equilib-

rium state. For a giver, it is the combination of both the 00
depth of the central well and the relative size of the nonlin- oo 250 60.0 7.0 100.0
earity that determines the occurrence of transient bimodality. '

We first numerically confirm Drozdov and Morillo’s find-
ings by using the present DAF-based method. It is found that
the (x(t)) and M,(t) obtained by the present approach for
6=2,D=0.1, and(x(0))=10"* are in excellent agreement - " 2
with the results of Drozdov and Morillo and with the sixth-
order cumulant approximation for early times. At later times, o4
the present results are closer to those of the cumulant methot
than to those of Drozdov and Morillo. We believe that our = es [
results are accurate for this regime. In this calculation, no o oo
significant transient bimodality is observed. However, for s |- o
=0.5, D=0.01, and(x(0))=10*, a long-lived transient
bimodality appears fromi=4 to 106. This is seen clearly 01 o
from the distribution functions plotted in Fig. 3. Also plotted
in Fig. 3 are the potentialbl(x,t) and V(x,t). As pointed a0 =l = -
out by Drozdov and MorilloJ(x,t) does not exhibit the flat 0.0 2e.0 so.0
region, which is standardly associated with the transient bi- k
modaljty in.bistable model§26]. The kinetic forceF(x,t) FIG. 4. Model(26) with 6=0.5, D=0.01, and(x(0))=10"*.
=—U’, which has not been plotted, also does not show an)(a) Plot of (x(t)) and(b) plot of M,(t). Solid lines, present results;

flat plateau. Our analysis focuses on the effective potentialgyyares; results of sixth-order cumulant approximation; triangles,
V(x,t) of the Schralinger-like Fokker-Planck equation. At yesyits of Drozdov and Morill§21].

initial times, V(x,t) shows a typical triple-well structure. At

earlier times the non"nearity is very Smi”e_, <X(t)> is relative nonlinearity. The nonlineal’ity becomes so important,
smalll. The dominant dynamical effect is the diffusion first €v€n in the early times, that it dominates the dynamical pro-
inside the central well and later over two barriers.tAt4,  C€SS before the wave packet effectively diffuses over the two

most of the wave packet has moved outside the central W(’E-E)otential humps. This results in the disappearance of long-

0.76

and reached two, almost equally deep, side wells. The no Lvsdl(g[a}lnsigplg bg?(}%‘;?l_'%of‘f S?ﬁgvnr;gn?gfag’leﬂﬂ;;‘:’ is
linearity eventually drives the wave packet to the right well, cached ,by= 16. Over the wr;ole time periokl (1) is very

but it takes a long time for the wave packet to tunnel throug small, which is the signature of small spreading of the wave
the large central barrier. This explains the existence of per: ackét In fact. due togstron nonlinearitp the Iegft eak exists
sistent transient bimodality over the time period fros4 to b X X 9 Y, P

. . for only a short time period and is very small during the
105. The occurrence of the bimodality can also be seen fror@ourseyof the dynamicpal process. This ?/s confirmed %y the
the M »(t) function, which, together witkix(t)), is plotted in

! - 4 : . plot of the distribution function in Fig. 7. It is interesting to

Fig. 4. The failure of the cumulant expansion approximation,gie that the usual-three-time-period patte#h for M(t)

[21] can be easily seen in this case. Our DAF results are igpes not appear in our case.

excellent agreement with those of Drozdov and Morillo at all e should point out that the two examples we consider

times except for the period when the bimodality is disappearare for values of the parameters that result in much more

ing. The Drozdov and Morillo’s transient bimodality period challenging computational problems than were considered

is a bit longer than ours, which can also be seen from Figearlier[4,6,21. This provides strong support for the useful-

3(d). ness and reliability of the DAF-based method. It is believed
From the above analysis it is easy to predict that for giverthat these two computational examples should also be valu-

6, decreasind will lead to an even longer transient bimo- able for providing a severe test for any prospective numerical

dality. This is indeed the cagéor moderately smalD val-  methods for the field.
ues. As shown in Fig. 5, the transient bimodality period is
more than 5910 time units fo#=0.5, D=0.005, and IV. CONCLUSION

(x(0))=10"*. However, it is also true that decreasing the  In this paper a DAF-based method has been applied to the
diffusion coefficientD leads to an effective increase in the nonlinear Fokker-Planck equation. A practical numerical
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FIG. 5. Plot of(x(t)) (solid line) and M,(t) (dashed ling of

model (26) with #=0.5, D=0.005, and/x(0))=10"*. FIG. 7. Distribution functionf(x,t) for model (26) with @
=0.5,D=10 4, and(x(0))=10 * att=5, 8, 9, 12, 14, and 15.

scheme, which combines the usual path-integral conbept ] o ) ] o

which is not a path-integral methodwith the DAF idea, is K-point Stirling interpolation formula finite-difference

proposed and illustrated by example computations. The exnethod[21]. It is found that the DAF-based method, while

tension of the present method to two- and three-dimension&iMmple in its implementation, usually provides better, but al-

problems is straightforward and is under current consider\vays at least the same, level accuracy asdhmoint Stirling

ation. The accuracy and reliability of our method has beernterpolation formula. The power of the present method is

demonstrated by application to an exactly solvable, nonlineafemonstrated by the achievement of a relative precision of

Fokker-Planck equation and compared with the accurat@bout 10*° using only 51 grid points and a time increment
of 0.01. It is easy for the present method to achieve even

better precision, if that is needed for a problem under study,
by either a slight increase in the number of grid points or a
slight decrease in the time increment. A further, and much
more challenging, test of the present method is the nonlinear
self-consistent dynamic mean-field Fokker-Planck equation
that allows an ordered-disordered phase transition. d~or
=0.5, D=0.01, two important approximation methods,
namely, the cumulant expansion and Suzuki’'s scaling theory,
have been previously showg1] to fail to describe the oc-
currence of a long-lived transient bimodality. Here the
present DAF-based method is shown to work very well for
this case. Our DAF results are in excellent agreement with
those of Drozdov and Morillo over all times except for the
period when transient bimodality is disappearing. The
present method is capable of solving two additional ex-
amples that are difficult to compute. One exam@e-0.5,

FIG. 6. Plot of(x(t)) (solid line) and M,(t) (dashed ling of D =0.005 has a transient bimodality lasting more than 5910
model (26) with #=0.5, D=10"*, and(x(0))=10"4. time units. The othetd=0.5, D=10*) has a very strong

1.0 |-

04 -

<a>and M,

0.0
a.0 8.0 10.0 160 20.0
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nonlinearity. These two examples provide a severe test dfeve that the usual kinetic potential analysis works only if
any computational method. It is believed that the presenthe generalized diffusion coefficieBt(x,t) is of order unity.
DAF based method will provide a rigorous numerical ap-The real dynamics is determined by the competition between
proach for handling a variety of statistical mechanical probthe nonlinear motion, which tends toward to a global

lems occurring in physics, chemistry, and biology.

monostable value ofx),, and the random diffusion process

Another important feature of the present study is the treatWithin the time-dependent effective potentig(x,t). By us-
ment of the nonlinear self-consistent dynamic mean-fieldnd the present effective-potential-based analysis, we are able
Fokker-Planck equatiofd], derived for a nonlinear muscle 0 explain qualitatively the occurrence and duration of the

contraction model by Kometani and Shimigsl. The equi-

transient bimodality. Our analysis is strongly supported by

librium properties and typical dynamical behavior of the WO numerical examples. One of them, characterized by a
problem have been excellently analyzed by Desai and ZwarsMallD, allows an extremely long transient bimodality. The
zig [4]. A recent interesting development of the problem isOther one, with an even smaller, shows a very short tran-

due to Drozdov and Morilld21]. They have found a long-

sient bimodality due to the increase in the relative strength of

lived transient bimodality for which both the cumulant ex- the nonlinearity. It is hoped that the present effective-
pansion and Suzuki's scaling theory do not work. In additionPOtential-based interpretation will be useful for the under-
to this, the long-lived transient bimodality turns out also toStanding of the dynamics of other nonlinear Fokker-Planck
be a problem for the usual interpretation of the phenomenofduations. In future work we plan to examine the application

in terms of a flat region of the kinetic potentidlx,t) or its
associated forc€(x,t). We note that for giver® and initial

of the DAF-based method to the Fokker-Planck equation re-
sulting from the standard eigenfunction expansion and com-

distribution, the appearance and disappearance of the lon§a'€ it with Shizgal's methof3]. We also shall study two-
lived transient bimodality are determined by the diffusion@nd higher-dimensional linear and nonlinear Fokker-Planck

coefficient D, which is, howevernot incorporated in the €duations.

kinetic potential. This explains the failure of the standard
interpretation. The present analysis employs the effective po-
tential V(x,t) of the Schrdinger-like Fokker-Planck equa-
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