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Numerical method for the nonlinear Fokker-Planck equation
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A practical method based on distributed approximating functionals~DAFs! is proposed for numerically
solving a general class of nonlinear time-dependent Fokker-Planck equations. The method relies on a numeri-
cal scheme that couples the usual path-integral concept to the DAF idea. The high accuracy and reliability of
the method are illustrated by applying it to an exactly solvable nonlinear Fokker-Planck equation, and the
method is compared with the accurateK-point Stirling interpolation formula finite-difference method. The
approach is also used successfully to solve a nonlinear self-consistent dynamic mean-field problem for which
both the cumulant expansion and scaling theory have been found by Drozdov and Morillo@Phys. Rev. E54,
931 ~1996!# to be inadequate to describe the occurrence of a long-lived transient bimodality. The standard
interpretation of the transient bimodality in terms of the ‘‘flat’’ region in the kinetic potential fails for the
present case. An alternative analysis based on the effective potential of the Schro¨dinger-like Fokker-Planck
equation is suggested. Our analysis of the transient bimodality is strongly supported by two examples that are
numerically much more challenging than other examples that have been previously reported for this problem.
@S1063-651X~97!07907-5#

PACS number~s!: 02.70.Rw, 05.40.1j, 02.50.2r, 52.65.Ff
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I. INTRODUCTION

Microscopic systems, whose dynamics are governed c
sically by the Liouville equation and quantally by the vo
Neumann equation, are time reversible. However, both eq
tions are not soluble except under very special conditio
Reduced descriptions are standardly obtained using
Bogoliubov-Born-Green-Kirkwood-Yvon~BBGKY! hierar-
chy, Zwanzig’s equation, or, equivalently, Mori’s genera
ized Langevin equation, but these equations are still ex
and thus, in general, also not soluble. However, appropr
truncation can lead to nonlinear equations describing ma
scopic irreversible phenomena, such as the relaxation of t
modynamic systems that are far from equilibrium and
macroscopic self-organization of hierarchical biological s
tems. For a wide class of problems a useful but much sim
description is often given by the Fokker-Planck equati
which is a mesoscopic kinetic equation incorporating a
terministic drift vector and a chaotic diffusion tensor. T
simplicity and the flexibility of the Fokker-Planck equatio
make it a popular kinetic equation both for theoreticians a
for experimentalists. Theoretical aspects of the Fokk
Planck equation, stimulated by new experimental findin
are still under intensive studies. On the other hand, a var
of new experimental phenomena, some anticipated
theory, have been found to be well described by the Fokk
Planck equation. This synergism between experiment
theory, coupled with ever-increasing computer power,
spurred intensive efforts to obtain accurate numerical s
tions of the Fokker-Planck equation efficiently. Analytic
solutions, valuable in their own right as well as for testi
new numerical methods, are available for only a few sim
cases. For more complicated problems, both analytical
numerical methods are indispensable since the former yie
561063-651X/97/56~1!/1197~10!/$10.00
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conceptual basis for understanding the physics describe
the Fokker-Planck equation and the latter provide deta
solutions.

The numerical solution of the Fokker-Planck equation a
in particular the nonlinear form of this equation, is still
challenging problem. Various approaches have been
plored for obtaining numerical solutions. Suzuki’s scali
theory @1# and normal mode analyses@2# have both proved
useful for obtaining approximate solutions. However, scal
theory is accurate only to a few percent for intermedi
times ~i.e., those between the initial and equilibrium state!
in the case of a linear bistable system@3# and normal mode
analyses may suffer from slow convergence for general pr
lems. A cumulant moment method has been used succ
fully by Desai and Zwanzig@4# for a nonlinear self-
consistent dynamic mean-field model@5#. The slow
convergence of the cumulant hierarchy was later observe
a study of a transient bimodality carried out by Bre
Casado, and Morillo@6#. Path-integral methods have bee
utilized by a number of authors@7–9#. Wehner and Wolfer
@10# have presented a practical formalism that numerica
evaluates the path integrals involving the Onsager-Mach
functionals and reduces the errors to a few percent. Mo
Carlo techniques@11# are useful for providing information
about certain properties of the system in terms of the m
ments of the stochastic process without the need for di
reference to the probability density distribution. In the ca
where the entire distribution function is required, direct a
proaches, such as those based on an eigenfunction expa
@12,13# or finite-difference methods@14–16#, are frequently
used. The eigenfunction expansion method is applicable
general class of linear problems. Through this approa
various spectral methods can be used to provide extrem
accurate solutions of the Fokker-Planck equation. In parti
1197 © 1997 The American Physical Society
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lar, by utilizing nonclassical weight functions that can
adapted to the problem under study, Shizgal’s method@17#
has been shown@3# to be superior to most others in terms
accuracy. The finite-difference method is known to lead
ten to stiff systems of ordinary differential equations w
respect to the time. Chang and Cooper@18# have discussed a
practical finite-difference procedure that allows the distrib
tion function to evolve in a quasiequilibrium manner a
preserves the number density of the system~in the absence o
external sources or sinks!. Larsenet al. @19# generalized the
Chang-Cooper method to allow a large time increment
achieve greater numerical stability for a wide class of s
tems, including the nonlinear Compton problem. Their a
proach, however, depends on having analytic expression
the collision parameters, which, in general, are not availa
for other applications. Recently, Epperlein@20# further gen-
eralized the Chang-Cooper method by taking into acco
energy conservation. His fully conservative scheme has b
successfully applied to the Coulomb collision problem o
spatially homogeneous plasma. Drozdov and Morillo@21#
have presented an elegantK-point Stirling interpolation for-
mula finite-difference method, which provides a high level
accuracy without much increase in the number of spatial g
points required. Their method has been successfully app
to the nonlinear self-consistent dynamic mean-field Fokk
Planck equation@5#.

The purpose of the present work is twofold. First, w
utilize a distributed approximating functional@22,23# ~DAF!
based time-dependent method for the solution of the non
ear Fokker-Planck equation. The reliability and accuracy
this DAF-based method are tested by considering an ana
cally solvable, nonlinear example problem. Second, we
ply the method to a numerically more challenging proble
the nonlinear self-consistent dynamic mean-field model,
troduced by Kometani and Shimizu@5# to describe the mu-
tual controlling and regulating interaction between a mac
scopic biological supersystem and its weakly~Weiss-field!
coupled microscopic subsystems@4,24,25#. Desai and Zwan-
zig @4# reconsidered this model and derived the nonlin
self-consistent dynamic mean-field Fokker-Planck equa
using both the cumulant method and a BBGKY hierarchi
approach. An interesting, non-Gaussian equilibrium distri
tion and a nonlinear order-disorder phase transition w
found by these authors using the former expansion meth
Additional formal analyses were later given by Dawson@24#.
The present choice of this numerical example is motiva
by the numerical study given recently by Drozdov and M
rillo @21#. They found an interesting, long-lived transient b
modality in a globally monostable case, which results
slow convergence of the cumulant hierarchy and the fail
of Suzuki’s scaling hypothesis. Another important aspec
their findings is that the standard kinetic potential meth
@26# fails to predict the occurrence of the long-lived bim
dality. We are particularly interested in the causes of t
failure and for this reason we analyze the validity of t
conventional kinetic potential method. It is found that th
method provides correct dynamical information if the gen
alized diffusion coefficient is of order unity. An alternativ
analysis for the transient bimodality based on the effec
potential of the Schro¨dinger-like Fokker-Planck equation i
proposed. The present analysis of the long-lived trans
-
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bimodality emphasizes the competition between
monostable oriented nonlinear effect and the random di
sion effect inside the effective potential. Our analysis
strongly supported by two special examples that we consi
One of these is characterized by an extremely long-liv
transient bimodality and the other by a very short transi
bimodality due to an extremely large relative nonlinear
fect.

This paper is organized as follows. First, a review of t
DAF formalism and a practical DAF-based space-time d
cretization scheme are presented in Sec. II. For the purp
of this presentation, we review only one particular DAF fo
malism, namely, the Hermite DAF, which we use througho
this work; however, we note that there is an ongoing eff
devoted to the further theoretical development of DAFs. T
DAF-based space-time discretization scheme is very sim
and straightforward. It has some features similar in spirit
most finite-difference schemes. In this section a compari
to the formal derivation of the linear Fokker-Planck equati
is also made. The reliability and accuracy of the pres
method is demonstrated using an exactly solvable Fok
Planck equation. Section III is devoted to the numeri
study of the nonlinear self-consistent dynamic mean-fi
Fokker-Planck equation. We first give a brief description
the equation and then compare our results with those
Drozdov and Morillo@21#. An explanation for the presenc
of a long-lived transient bimodality is presented. We e
with a brief summary of our conclusions in Sec. IV

II. METHOD

This section consists of three subsections. The DAF f
malism is reviewed in Sec. II A. In Sec. II B a DAF-base
space-time discretization scheme is proposed. Finally, a
merical test of the present method is given in Sec. II C.

A. The distributed approximating functional formalism

Distributed approximating functionals have been intr
duced@22,23# as anapproximatemapping of a certain set o
continuousL2 functions to itself, accurate to a given tole
ance. This set of functions is termed the ‘‘DAF class’’
functions. Again to a specified accuracy, the DAFs can
chosen so that the approximate mapping samples the cla
functions of interest only on a discrete set of points. One
the important properties associated with the most commo
usedcontinuousDAF mapping is that it isalwayswell tem-
pered, by which term we mean that both the DAF-class fu
tions and their derivatives are approximated to the same l
of approximation.~However, the approximation is not nec
essarily to the same level of accuracy since derivatives
not necessarily lie in the DAF class.! We remark that the
DAF mapping isexact for polynomials of degreeM11,
whereM is the highest degree polynomial being used
constructing the DAF. Polynomials, of course, arenot L2 and
this behavior is related to the fact that the DAFs yield
approximate, rather than exact, mapping on the Hilbert sp
of L2 functions.

The ability of the DAF to provide an analytic represent
tion of a function and its derivatives in terms of values of t
function given only a discrete grid is central to its success
use in various computational applications. A variety of re
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56 1199NUMERICAL METHOD FOR THE NONLINEAR . . .
izations of DAFs have been proposed, depending on the
ture of the application of interest. We limit the followin
discussion to the Hermite DAF, which is the form utilize
exclusively in the present work.

The Diracd function is defined to have the properties

f ~x!5E
2`

`

d~x2x8! f ~x8!dx8, ~1!

f ~ l !~x!5E
2`

`

d~ l !~x2x8! f ~x8!dx8. ~2!

However, relations~1! and ~2! are of little numerical utility
for practical computations because they cannot be appr
mated directly by quadrature. In the DAF approach, an
proximation to thed(x2x8) is constructed by using eve
Hermite polynomialsH2n @becaused(x) is symmetric in its
argument# as

dM~x2x8us!5
1

s
expS 2~x2x8!2

2s2 D
3 (

n50

M /2 S 21

4 D n 1

A2pn!
H2nS x2x8

&s
D . ~3!

Obviously forany fixed s, the Hermite DAFdM(x2x8us)
becomes identical to thed function when the maximal degre
of the polynomialM goes to infinity, that is,

lim
M→`

dM~x2x8us!5d~x2x8!. ~4!

Additionally, for fixedM , the Hermite DAF becomes iden
tical to d(x2x8) in the limit s→0, i.e.,

lim
s→0

dM~x2x8us!5d~x2x8!. ~5!

In analogy to the functional properties given in Eqs.~1! and
~2!, the continuous DAF mappings are

f ~x!' fDAF~x!5E
2`

`

dM~x2x8us! f ~x8!dx8, ~6!

f ~ l !~x!' fDAF
~ l ! ~x!5E

2`

`

dM
~ l !~x2x8us! f ~x8!dx8, ~7!

wheredM
( l )(x2x8us) is termed a ‘‘differentiating DAF’’ and

is given by

dM
~ l !~x2x8us!5

1

2l /2s l11 expS 2~x2x8!2

2s2 D (
n50

M /2 S 21

4 D n

3~21! l
1

A2pn!
H2n1 lS x2x8

&s
D . ~8!

It is exactly thel th derivation ofdM(x2x8us), in analogy to
d ( l )(x2x8), occurring in Eq.~2!. The Hermite DAF expres-
sions, i.e., Eqs.~6! and~7!, can be discretized by quadratur
thereby providing a computational scheme for genera
continuous fDAF(x) and fDAF

( l ) (x) from a knowledge off (x)
a-

i-
-

g

on a discrete grid of points~the quadrature points!. With an
appropriate choice ofM ands, the Hermite DAF thus pro-
vides a controllable approximation to DAF-class functions
any x value of interest of the form

f ~x!' fDAF~x!5D(
i

dM~x2xi us! f ~xi !, ~9!

whereD is the grid spacing. Moreover, the derivatives of t
Hermite DAF provide a controllable approximation
dl@d(x2x8)#/dxl and therefore can be used to generate a
lytic approximations to derivatives for the DAF class
functions. Differentiating DAFs lead to an analytic represe
tation of f ( l )(x), at any point x in the domain of definition,
according to

f ~ l !~x!5D(
i

dM
~ l !~x2xi us! f ~xi !, ~10!

which is accurate if the derivatives are also in the DAF cla
Equation~10!, together with Eq.~8!, implies that the differ-
entiation operation has been converted into an algebraic
eration in the DAF representation. This important featu
makes the DAFs a powerful computational tool for solvi
various ordinary and partial differential equations. In partic
lar, a given operator of the general form

L5A~x!1B~x!
]

]x
1C~x!

]2

]x2
1••• ~11!

has the Hermite DAF representation

L~xi ,xj !5A~xi !d i j1B~xi !
D

&s2
expS 2~xi2xj !

2

2s2 D
3 (

n50

M /2 S 21

4 D n~21!
1

A2pn!
H2n11S xi2xj

&s
D

1C~xi !
D

&s3
expS 2~xi2xj !

2

2s2 D
3 (

n50

M /2 S 21

4 D n 1

A2pn!
H2n12S xi2xj

&s
D 1••• .

~12!

This is the form that is most useful for ordinary differenti
equations and partial differential equations. It can also
used directly for numerical diagonalization in the case of
eigenvalue problem.

The most attractive properties of the Hermite DAF f
solving differential equations can be summarized as follo
~i! It transforms ordinary and partial differentiations into o
erations with appropriate integral kernels, which when eva
ated by quadrature involve their calculation to a matr
vector multiplication. ~ii ! The global nature of spectra
methods makes their practical application difficult for pro
lems with complicated boundary conditions and complex
ometry. By contrast, the Hermite DAF leads to high
banded matrix representations of derivatives, similar
finite-difference and finite-element methods. Thus the D



r
ity
ie
an
ul
lin
rid
hi
o
o
nt
an
es
s
ry
ng

lt,

s

b
ng

e
ec

en

e

t
u

f
e
h

to
o
n

.

of
f

-

s.

er
tor
Our
ic
e

the

is

d

.

o
re-
er-

1200 56D. S. ZHANG, G. W. WEI, D. J. KOURI, AND D. K. HOFFMAN
method possesses the best features of several earlie
proaches. That is, the Hermite DAF has sufficient flexibil
to handle complicated boundary conditions and geometr
like finite-difference and finite-element methods, but with
accuracy of the same order as spectral methods. In partic
since the DAF does not require a Gaussian or fixed samp
quadrature rule in its discretization, the number of g
points is not restricted by the degree of the polynomial. T
implies that DAFs can be used for an arbitrarily large d
main without increasing the size of the underlying polyn
mial set. ~iii ! Unlike spectral methods and finite-eleme
methods, the DAF-based method is extremely simple
entails low CPU costs. The DAF matrix and its derivativ
are calculated onlyonce ~in a computation requiring les
than 1

100 of a second in a typical calculation on an ordina
workstation! and once obtained can be used in a wide ra
of problems. In addition,dM

( l )(x2x8) and dM(x2x8) both
depend only onx2x8 and, as a result, the DAF matrices~on
an evenly spaced grid! have a Toeplitz structure. As a resu
one needs to store onlyW11 numbers fordM

( l )(xi2xj ) ~each
l ! and for dM(xi2xj ) in order to generate all the variou
DAF matrices~here 2W11 is the DAF bandwidth!. ~iv!
Furthermore, the DAF matrix acting on a vector can
evaluated by fast convolution, so the effort of evaluati
expressions like Eqs.~9! and ~10! scales asN log2(2W11),
whereN is the number of grid points. A numerical schem
based on this DAF formalism is outlined in the next subs
tion.

B. Numerical scheme

Consider a nonlinear Fokker-Planck equation of the g
eral form

] f ~x,t !

]t
5

]@A„x, f ~x,t !,t…f ~x,t !#

]x

1
]2@B„x, f ~x,t !,t…f ~x,t !#

]x2
5LFP„f ~x,t !,t…f ~x,t !,

~13!

where the time dependence of the~pseudolinear! Fokker-
Planck operatorLFP can arise from an implicit dependenc
on the distribution functionf (x,t) in the generalized drift
coefficient A„x, f (x,t),t… and the diffusion coefficien
B„x, f (x,t),t… and from an explicit dependence. From a n
merical standpoint, it is helpful to symmetrizeLFP( f ,t) f ap-
propriately in order to take into account the dual roles of
since in the nonlinear casef appears both as a part of th
operator and as the function on which the operator acts. T
is illustrated, for a simple example ofL( f ) f5 f (] f /]x), by

L~ f !5
1

2 F f ]

]x
1

] f

]xG . ~14!

The symmetrized form of the Fokker-Planck opera
LFP( f ) is assumed in the following discussion. In the case
forward time propagation we know both the functio
f (x,t8) and the operatorLFP at an earlier timet8. The func-
tion f (x,t) at a later timet can be obtained by iterating Eq
~13!,
ap-

s,

ar,
g

s
-
-

d

e

e

-

-

-

is

r
f

f ~x,t !5F11E
t8

t

dt1LFP„f ~x,t1!,t1…1E
t8

t

dt1E
t8

t1
dt2

3LFP„f ~x,t1!,t1…LFP„f ~x,t2!,t2…1•••G f ~x,t8!

5F11 (
n51

` E
t8

t

dt1E
t8

t1
dt2•••E

t8

tn21
dtn

3LFP„f ~x,t1!,t1…•••LFP„f ~x,tn!,tn…G f ~x,t8!. ~15!

This form isnot numerically practical since the matrices
the operatorsLFP„f (x,tn),tn…, and consequently the values o
functions f (x,tn), are needed at all timestn . In order to
obtain a practical numerical form, we choose the timetn
such that n(tn2tn21)5t2t8 and use the Dyson time
ordering operatorT. Thus Eq.~15! can be written as

f ~x,t !5TF11 (
n51

`
1

n! Et8
t

dt1E
t8

t

dt2•••E
t8

t

dtn

3LFP„f ~x,t1!,t1…•••LFP„f ~x,tn!,tn…G f ~x,t8!

5T expF E
t8

t

ds LFP„f ~x,s!,s…G f ~x,t8!. ~16!

This is a convenient form for introducing approximation
For a sufficiently small time incrementDt5t2t8,

f ~x,t !'F11 (
n51

R
1

n!
@LFP„f ~x,t8!,t8…Dt#nG f ~x,t8!.

~17!

This expression should be useful so long asf (x,t) does not
vary rapidly with time orDt is sufficiently small. It ignores
errors associated with the commutator ofLFP at time t and
t1Dt. We note that retaining more terms in the sum ov
n yields more accurate results, even though commuta
terms in lower-order contributions have been neglected.
expression~17! is different, which results from the stochast
derivation of a Fokker-Planck equation in which only th
terms up to first order inDt in the Kramers-Moyal expansion
are kept. Numerical tests indicate that a truncation at
term that is linear in the operatorLFP ~R51, first-order ap-
proximation! is satisfactory for sufficiently smallDt. How-
ever, for a largeDt, it is necessary to retain the term that
quadratic inLFP ~i.e.,R52, or second order inLFP! or terms
of even higher order inLFP, in order to achieve the desire
accuracy and numerical stability.

For a given timet, the Hermite DAF representation of Eq
~17! is constructed according to Eq.~12!. The robust nature
of the DAF-based method is illustrated by applying it to tw
nonlinear Fokker-Planck equations, as discussed in the
mainder of this paper. In the present computations, the H
mite DAF parameters are taken asM554 ands52.36D for
all cases.
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56 1201NUMERICAL METHOD FOR THE NONLINEAR . . .
C. Numerical test

In order to demonstrate the usefulness, test the accur
and explore the limitations of the DAF-based method for
nonlinear Fokker-Planck equation, we choose the follow
nonlinear model as a benchmark:

] f ~x,t !

]t
5

]$@vx1u^x~ t !&# f ~x,t !%

]x
1D

]2f ~x,t !

]x2
,

~18!

where^x(t)& is the first moment of the distribution

^x~ t !&5E
2`

`

x f~x,t !dx ~19!

andv, u, andD are constant. Assuming an initiald-function
spatial distribution

f ~x,0!5d~x2x0!, ~20!

the exact solution to Eq.~18! is

f ~x,t !5
1

A2ps~ t !
expF2

@x2^x~ t !&#2

2s~ t ! G , ~21!

where^x(t)& ands(t) are given by

^x~ t !&5x0e
2~v1u!t ~22!

and

s~ t !5
D

v
~12e22vt!, ~23!

respectively. By defining the second momentM2(t) as

M2~ t !5^x2~ t !&2^x~ t !&2, ~24!

the accuracy of the DAF-based method can be tested us
relative error defined by

«~ t ![
M2~ t !R

s~ t !
21. ~25!

The subscriptR indicates that the second momentM2(t) has
been evaluated using theR-order approximate expansio
~17! for the present numerical calculations. The relative er
is plotted in Fig. 1 forD50.1, v51, u51, andx051. The
time increment is taken asDt50.01 for all cases. Only 31
evenly spaced grid points, centered about the maximum
f (x,t), are used for orderR51, 2, and 3, while slightly more
grid points (N551) are used for the fourth-order approxim
tion (R54) to demonstrate that the present method can
ily achieve extremely high accuracy. The relative errors
the accurate results obtained by theK-point Stirling interpo-
lation formula of Drozdov and Morillo@21# are also shown
in the figure for comparison. Their results were also obtain
using 31 grid points and a time increment of 0.01. They u
an exponential power series expansion of the propagato
approximately determinef (x,t) at small t ’s. Similarly, our
computation starts fromt50.1 ~In a more general case w
just propagate the initiald function.! It is seen that the highe
cy,
e
g

a

r

of

s-
f

d
d
to

the order of approximation, the better the results for
present time increment. In the case of small time increme
the effect of higher-order terms diminishes. For each giv
R, the present results are of the same or higher leve
accuracy than those obtained by Drozdov and Morillo@21#
using an appropriateK value. It should be noted that ourR
value doesnot correspond to theirK value. The power of the
present method is demonstrated by choosingR54. In that
case the relative error decreases to about 10210.

III. A NONLINEAR SELF-CONSISTENT DYNAMIC
MEAN-FIELD FOKKER-PLANCK EQUATION

This section consists of two subsections. For charity
presentation, the nonlinear model is briefly reviewed in S
III A. The long-lived bimodal behavior, discovered b
Drozdov and Morillo, is numerically confirmed in Sec. III B
A physical analysis of the phenomenon, based on the ef
tive potential of the Schro¨dinger-like Fokker-Planck equa
tion, is also given. The present interpretation is supported
two numerical examples, which are much more challeng
than those reported previously.

A. Model

The nonlinear stochastic mean-field model was introdu
by Kometani and Shimizu@5# as a physical model for muscl
contraction. It describes the dynamics of a large numberN of
subsystems interacting through a mean field. In the largN
limit (N→`) and using the molecular chaos assumption
the pair particle density operator, one obtains a true non
ear Fokker-Planck equation@4# ~13!, namely,

] f ~x,t !

]t
5

]$@x31~u21!x2u^x~ t !&# f ~x,t !%

]x
1D

]2f ~x,t !

]x2
,

~26!

FIG. 1. Logarithm of the relative error log10u«(t)u. Solid lines,
present work; dashed lines, Ref.@21#.



-

e

h

o
a

ad

-
on
se
n
rs
n

-

d

a-
ari-

in
nu-
eir
o-
of
eri-

wly
i’s
nt

ral
heir
and
al-
u-
he
the
as
he

tic

lity
b-

ft

1202 56D. S. ZHANG, G. W. WEI, D. J. KOURI, AND D. K. HOFFMAN
for the one-dimensional, ‘‘one-particle’’ distribution func
tion f (x,t) with a modified bistable drift force

A~x,t; f !5x31~u21!x2u^x~ t !& ~27!

and Gaussian white noise

B~x,t; f !5D, ~28!

where^x(t)& is given by the instantaneousx mean

^x~ t !&5E x f~x,t !dx. ~29!

This shows explicitly that the Fokker-Planck operator d
pends on the distribution function. Bothu andD are taken to
be positive parameters. The equilibrium solution is of t
non-Gaussian@4# form

f eq~x!5Z21 expH 2
1

D Fx44 1~u21!
x2

2
2u^x&exG J ,

~30!

whereZ is the normalization factor and̂x&e is the equilib-
rium mean position

^x&e5E x feq~x!dx. ~31!

As discussed in great detail by Desai and Zwanzig@4#, this
system allows an ordered-disordered phase transition as
variesu and/orD. The phase transition is characterized by
critical zc line implicitly given by

A2Dc

uc
5

uc21

zcuc
5
D2~3/2!~zc!

D2~1/2!~zc!
, ~32!

whereD2n(z) is a parabolic cylinder function. For givenu
andD, z satisfiesz5(u21)/A2D such that ifz,zc , the
system is in the disordered phase with^x&e,050. If z.zc ,
the system is in the ordered phase with three possible ste
state values of mean position: the metastable state^x&e,0
50 and globally stable states given by

^x&e,656 1
2 $~22u!1@~21u!2224D#1/2%1/2. ~33!

At the critical positionz5zc the system will bifurcate be
tween the two phases. It takes a long time for a given n
equilibrium state to attain equilibrium if the system is clo
to the critical line~the critical slowing down of the relaxatio
to equilibrium!. Due to the nonlinearity, the system prefe
only one steady state for the ordered phase, depending o
symmetry of the initial distributionf (x,0). If the initial dis-
tribution f (x,0) is symmetric with respect tox50, then the
system will be in thê x&e,050 steady state. If there is sym
metry breaking~with respect tox50! in the initial distribu-
tion f (x,0), such aŝ x(0)&.0 @or ^x(0)&,0], the nonlin-
earity will lead the system to a right (^x&e,1) chiral state@or
a left (^x&e,2) chiral state#. We refer the reader to Desai an
Zwanzig’s excellent analysis@4# for more details.
-
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B. Long-lived bimodality and interpretation

Numerical studies of this nonlinear Fokker-Planck equ
tion have been conducted by a number of authors for a v
ety of states in the (u,D) parameter space@4,6,21#. Desai
and Zwanzig@4# studied five different states distributed
different regions of the phase diagram using both direct
merical simulations and the cumulant moment method. Th
results indicate that the first few terms of the cumulant m
ment method provide both a qualitative physical picture
the problem and a very good approximation to the num
cally exact results. Brey, Casado, and Morillo@6# later found
that the cumulant moment method converges very slo
when the diffusion coefficient is small. They used Suzuk
scaling idea@1# to speed up their computation. A very rece
numerical study by Drozdov and Morillo@21# shows an in-
teresting long-lived transient bimodality before the chi
stable steady state is reached in the ordered phase. T
study indicates that both the cumulant moment method
the scaling theory break down when the long-lived bimod
ity occurs in this nonlinear case. It is well known that Suz
ki’s scaling theory provides a good approximation to t
bistable dynamics in the linear case. What seems to make
discovery by Drozdov and Morillo most remarkable is,
argued by these authors, that there is no ‘‘flat’’ region in t
kinetic potentialU(x,t),

U~x,t !5
x4

4
1~u21!

x2

2
2u^x~ t !&x. ~34!

This is despite the fact that the flat region in the kine
potential or the flat plateau in the corresponding force

F~x,t !52
]U~x,t !

]x
~35!

has been standardly associated with transient bimoda
@26#. Thus Drozdov and Morillo’s discovery presents an o

FIG. 2. Effective potentialV(x,t) of Eq. ~36! for u50.5, t
50, ^x(0)&50, andD51.0, 0.1, 0.01, 0.005, and 0.0005 from le
to right ~or from right to left!.
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FIG. 3. Distribution functionf (x,t) ~solid line!, effective potentialV(x,t) of Eq. ~36! ~dashed line!, and kinetic potentialU(x,t) of Eq.
~34! ~dotted line! for model~26! with u50.5,D50.01, and̂ x(0)&51024. ~a! t51.0, ~b! t54.0, ~c! t572.0, and~d! t5105.5. Triangles,
f (x,t) of Drozdov and Morillo@21#.
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stacle to the usual explanation of the occurrence of the lo
lived transient bimodality. The purpose of the present stu
is to offer an alternative interpretation for the persistent tr
sient phenomena. We note that the effective strength of
nonlinearity not only is determined by the size ofu, but also
is influenced by the relative magnitude of the noise~the gen-
eralized diffusion coefficient!. Therefore, it is not a surpris
that the kinetic potential fails to describe the system qual
tively whenever the generalized diffusion coefficient is
from unity. We have found that the long-lived transient b
modality can be easily understood in terms of the effect
potentialV(x,t),

V~x,t !5
@x31~u21!x2u^x~ t !&#2

4D
2
1

2
~3x21u21!,

~36!
g-
y
-
e

-
r

e

which results from the transformation of the Fokker-Plan
equation to a Schro¨dinger-like Fokker-Planck equation@27#.
The corresponding Schro¨dinger-like Fokker-Planck equatio
for each given timet has the form

2D
]2cn~x!

]x2
1V~x!cn~x!5«ncn~x!, ~37!

where«n and cn(x) are the eigenvalue and eigenfunctio
respectively. Here we refer the reader to Ref.@27# for more
details about the transformation of the Fokker-Planck eq
tion to the Schro¨dinger-like Fokker-Planck equation. It i
noted that the effective potentialV(x,t) and the correspond
ing Schrödinger-like Fokker-Planck equation~37! are intro-
duced for interpretational purposes. Computationally,
pursue Eq.~26! according to the method of Sec. II. Unlik
the kinetic potentialU, the effective potentialV incorporates
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the size of the diffusion coefficient to represent more clos
the true size of the nonlinearity in the system. As a result,
occurrence of the bimodality isentirely predictable. For
u50.5, variousV(x,0) are plotted in Fig. 2 for several value
of D. It is seen thatV(x,0) has a triple-well structure whe
D is very small. The smaller theD value, the deeper the
central well. Obviously, the large humps nearx50 effec-
tively block the initial wave packet~distribution function!
from quickly escaping the metastable central well if it
placed there att50. However, this is not the sole effec
because a smallD means a large nonlinear effect. Th
causes the system to quickly reach the global stable equ
rium state. For a givenu, it is the combination of both the
depth of the central well and the relative size of the non
earity that determines the occurrence of transient bimoda

We first numerically confirm Drozdov and Morillo’s find
ings by using the present DAF-based method. It is found
the ^x(t)& andM2(t) obtained by the present approach f
u52, D50.1, and̂ x(0)&51024 are in excellent agreemen
with the results of Drozdov and Morillo and with the sixth
order cumulant approximation for early times. At later time
the present results are closer to those of the cumulant me
than to those of Drozdov and Morillo. We believe that o
results are accurate for this regime. In this calculation,
significant transient bimodality is observed. However, foru
50.5, D50.01, and^x(0)&51024, a long-lived transient
bimodality appears fromt'4 to 106. This is seen clearl
from the distribution functions plotted in Fig. 3. Also plotte
in Fig. 3 are the potentialsU(x,t) andV(x,t). As pointed
out by Drozdov and Morillo,U(x,t) does not exhibit the fla
region, which is standardly associated with the transient
modality in bistable models@26#. The kinetic forceF(x,t)
52U8, which has not been plotted, also does not show
flat plateau. Our analysis focuses on the effective poten
V(x,t) of the Schro¨dinger-like Fokker-Planck equation. A
initial times,V(x,t) shows a typical triple-well structure. A
earlier times the nonlinearity is very small@i.e., ^x(t)& is
small#. The dominant dynamical effect is the diffusion fir
inside the central well and later over two barriers. Att54,
most of the wave packet has moved outside the central
and reached two, almost equally deep, side wells. The n
linearity eventually drives the wave packet to the right we
but it takes a long time for the wave packet to tunnel throu
the large central barrier. This explains the existence of p
sistent transient bimodality over the time period fromt54 to
105. The occurrence of the bimodality can also be seen f
theM2(t) function, which, together witĥx(t)&, is plotted in
Fig. 4. The failure of the cumulant expansion approximat
@21# can be easily seen in this case. Our DAF results ar
excellent agreement with those of Drozdov and Morillo at
times except for the period when the bimodality is disappe
ing. The Drozdov and Morillo’s transient bimodality perio
is a bit longer than ours, which can also be seen from F
3~d!.

From the above analysis it is easy to predict that for giv
u, decreasingD will lead to an even longer transient bimo
dality. This is indeed the case~for moderately smallD val-
ues!. As shown in Fig. 5, the transient bimodality period
more than 5910 time units foru50.5, D50.005, and
^x(0)&51024. However, it is also true that decreasing t
diffusion coefficientD leads to an effective increase in th
ly
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relative nonlinearity. The nonlinearity becomes so importa
even in the early times, that it dominates the dynamical p
cess before the wave packet effectively diffuses over the
potential humps. This results in the disappearance of lo
lived transient bimodality. As shown in Fig. 6, foru50.5,
D51024, and ^x(0)&51024, the monostable state i
reached byt516. Over the whole time periodM2(t) is very
small, which is the signature of small spreading of the wa
packet. In fact, due to strong nonlinearity, the left peak ex
for only a short time period and is very small during th
course of the dynamical process. This is confirmed by
plot of the distribution function in Fig. 7. It is interesting t
note that the usual-three-time-period pattern@4# for M2(t)
does not appear in our case.

We should point out that the two examples we consi
are for values of the parameters that result in much m
challenging computational problems than were conside
earlier @4,6,21#. This provides strong support for the usefu
ness and reliability of the DAF-based method. It is believ
that these two computational examples should also be v
able for providing a severe test for any prospective numer
methods for the field.

IV. CONCLUSION

In this paper a DAF-based method has been applied to
nonlinear Fokker-Planck equation. A practical numeric

FIG. 4. Model~26! with u50.5, D50.01, and̂ x(0)&51024.
~a! Plot of ^x(t)& and~b! plot ofM2(t). Solid lines, present results
squares, results of sixth-order cumulant approximation; triang
results of Drozdov and Morillo@21#.
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scheme, which combines the usual path-integral concept~but
which is not a path-integral method! with the DAF idea, is
proposed and illustrated by example computations. The
tension of the present method to two- and three-dimensio
problems is straightforward and is under current consid
ation. The accuracy and reliability of our method has be
demonstrated by application to an exactly solvable, nonlin
Fokker-Planck equation and compared with the accu

FIG. 5. Plot of ^x(t)& ~solid line! andM 2(t) ~dashed line! of
model ~26! with u50.5, D50.005, and̂ x(0)&51024.

FIG. 6. Plot of ^x(t)& ~solid line! andM 2(t) ~dashed line! of
model ~26! with u50.5, D51024, and^x(0)&51024.
x-
al
r-
n
ar
te

K-point Stirling interpolation formula finite-difference
method@21#. It is found that the DAF-based method, whi
simple in its implementation, usually provides better, but
ways at least the same, level accuracy as theK-point Stirling
interpolation formula. The power of the present method
demonstrated by the achievement of a relative precision
about 10210 using only 51 grid points and a time increme
of 0.01. It is easy for the present method to achieve e
better precision, if that is needed for a problem under stu
by either a slight increase in the number of grid points o
slight decrease in the time increment. A further, and mu
more challenging, test of the present method is the nonlin
self-consistent dynamic mean-field Fokker-Planck equa
that allows an ordered-disordered phase transition. Fou
50.5, D50.01, two important approximation method
namely, the cumulant expansion and Suzuki’s scaling the
have been previously shown@21# to fail to describe the oc-
currence of a long-lived transient bimodality. Here t
present DAF-based method is shown to work very well
this case. Our DAF results are in excellent agreement w
those of Drozdov and Morillo over all times except for th
period when transient bimodality is disappearing. T
present method is capable of solving two additional e
amples that are difficult to compute. One example~u50.5,
D50.005! has a transient bimodality lasting more than 59
time units. The other~u50.5, D51024! has a very strong

FIG. 7. Distribution function f (x,t) for model ~26! with u
50.5, D51024, and^x(0)&51024 at t55, 8, 9, 12, 14, and 15.
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nonlinearity. These two examples provide a severe tes
any computational method. It is believed that the pres
DAF based method will provide a rigorous numerical a
proach for handling a variety of statistical mechanical pro
lems occurring in physics, chemistry, and biology.

Another important feature of the present study is the tre
ment of the nonlinear self-consistent dynamic mean-fi
Fokker-Planck equation@4#, derived for a nonlinear muscl
contraction model by Kometani and Shimizu@5#. The equi-
librium properties and typical dynamical behavior of t
problem have been excellently analyzed by Desai and Zw
zig @4#. A recent interesting development of the problem
due to Drozdov and Morillo@21#. They have found a long
lived transient bimodality for which both the cumulant e
pansion and Suzuki’s scaling theory do not work. In addit
to this, the long-lived transient bimodality turns out also
be a problem for the usual interpretation of the phenome
in terms of a flat region of the kinetic potentialU(x,t) or its
associated forceF(x,t). We note that for givenu and initial
distribution, the appearance and disappearance of the l
lived transient bimodality are determined by the diffusi
coefficientD, which is, however,not incorporated in the
kinetic potential. This explains the failure of the standa
interpretation. The present analysis employs the effective
tential V(x,t) of the Schro¨dinger-like Fokker-Planck equa
tion, which can incorporate the generalized diffusion coe
cient B(x,t) ~not just a constantD as in the present case!.
The effective potentialV(x,t) has a triple-well structure fo
small ^x(t)& values and changes into a double-well struct
as u^x(t)&u increases. It is important to note that the relati
strength of the nonlinearity is also affected by size ofD. For
a given general nonlinear Fokker-Planck equation, we
of
nt
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t-
d

n-

n

n

g-

o-

-

e

e-

lieve that the usual kinetic potential analysis works only
the generalized diffusion coefficientB(x,t) is of order unity.
The real dynamics is determined by the competition betw
the nonlinear motion, which tends toward to a glob
monostable value of̂x&e , and the random diffusion proces
within the time-dependent effective potentialV(x,t). By us-
ing the present effective-potential-based analysis, we are
to explain qualitatively the occurrence and duration of t
transient bimodality. Our analysis is strongly supported
two numerical examples. One of them, characterized b
smallD, allows an extremely long transient bimodality. Th
other one, with an even smallerD, shows a very short tran
sient bimodality due to the increase in the relative strength
the nonlinearity. It is hoped that the present effectiv
potential-based interpretation will be useful for the und
standing of the dynamics of other nonlinear Fokker-Plan
equations. In future work we plan to examine the applicat
of the DAF-based method to the Fokker-Planck equation
sulting from the standard eigenfunction expansion and co
pare it with Shizgal’s method@3#. We also shall study two-
and higher-dimensional linear and nonlinear Fokker-Pla
equations.
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